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Abstract—A numerical study has been made of steady-state free convective heat transfer from a solid sphere
to an incompressible Newtonian fluid for Grashof numbers of 0.05, 1, 10, 25 and 50 for a Prandtl number of
0.72. The stream function, energy, and vorticity transport equations were solved using an extrapolated
Gauss-— Seidel method. The values obtained for the average Nusselt number were found to be in reasonable
agreement with the experimental measurements obtained by previous workers. It was also observed that the
method used could not be applied to find solutions for Grashof numbers greater than 50.
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NOMENCLATURE

dimensionless viscous drag;
dimensionless pressure drag;
dimensionless total drag;

specific heat at constant pressure;
modified dimensionless vorticity defined
by equation (6);

Grashof number based on the radius of
the sphere (R3Bg(T, —~ T,)/v?);
gravitational acceleration;

average heat transfer coefficient;

local heat transfer coefficient;
dimensionless pressure at the front stag-
nation point;

dimensionless pressure at sphere surface ;
thermal conductivity ;

number of mesh points in the z-direction;
mesh size in the z-direction;

number of mesh points in the #-direction ;
mesh size in the @-direction;

average Nusselt number (2RH/k);

local Nusselt number (2Rhg/k);

Prandtl number {(v/a);

radius of sphere;

Rayleigh number (GrPr);

dimensionless radial coordinate ;
spherical polar coordinates;
dimensionless temperature;
dimensionless velocity components in the
z and #-directions;

a general continuous function represent-
ing T, G and y;

rectangular cartesian coordinates;
modified coordinate defined as z = Inr.

Greek symbols

a,

B,

£Gs
Ery

Ew,s

Eys

ww,

Subscripts

l’
j’
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thermal diffusivity (k/pC,);

volumetric coefficient of expansion with
temperature;

convergence criterion for the vorticity;
convergence criterion for the temp-
erature;

convergence criterion for a general
function;

convergence criterion for the stream
function;

dimensionless vorticity component in the
¢-direction ;

angular coordinate;

fluid kinematic viscosity ;

density;

coordinate representing the angle of ro-
tation about the axis of symmetry of the
flow;

dimensionless stream function ;
relaxation factor for the vorticity;
relaxation factor for the temperature;
relaxation factor for a general function;
weighting factor for upwind difference
representation of a first-order derivative
with respect to z;

weighting factor for upwind difference
representation of a first-order derivative
with respect to 0;

relaxation factor for the stream function.

mesh point index in the z-direction;
mesh point index in the 0-direction;
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Fi1G. 1. Spherical polar coordinate system.
i,j, indices of a mesh point in the flow region;
s, sphere surface;
o, outer boundary condition.
Superscripts
(L), (L)th iteration;
(L —1), (L — 1)th iteration.

1. INTRODUCTION

THE pPROCESS of heat transfer by free convection is
encountered frequently in industrial applications such
as steam boilers, digesters, furnaces, etc. In general, free
convective heat transfer becomes an important mode
of heat transfer in any situation in which a hot body is
immersed in an otherwise stationary medium.

Because of its considerable importance in many
engineering applications the fundamentals of heat and
mass transfer from solid particles, drops, or bubbles to
a continuous fluid phase have long attracted the
attention of investigators. The study of heat transfer
from a single sphere together with the associated fluid
dynamics has been used as a first step in the analysis of
multiparticle systems.

A considerable number of experimental and
theoretical studies have been carried out on free
convective heat and mass transfer from spherical
particles at high Rayleigh numbers (Ra > 10°, see for
example Pandya [1]). However, relatively few workers
have studied the same problem at low Rayleigh
numbers possibly because of the experimental
difficulties involved and because boundary layer
theory is not applicable. Thus, theoretical work has to
be based on numerical solutions of the Navier—Stokes
and energy equations.
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The pertinent analytical and experimental studies of
free convective heat transfer from a sphere are the
analytical studies of Mahony [2] and Fendel [3], and
the analytical and experimental study of Hossain [4],
and the experimental works of Meyer [5], Elenbaas
[6], Ranz and Marshall [7], Mathers, Madden and
Piret [8], Tsubouchi and Sato [9] and Yuge [10].
Most of these studies were confined to the determin-
ation of average Nusselt numbers. Hossain [4] was
the only one who obtained flow patterns and tempera-
ture distributions about a sphere and he was only able
to obtain them for extremely small Grashof numbers
(Gr < 1.0). There have been no reports of complete
analytical or numerical solutions for Grashof numbers
larger than 1.0.

The axially symmetric nature of the problem en-
abled the Navier—Stokes and the continuity equations
to be combined and expressed as a vorticity transport
equation and a stream function equation. These latter
two and the energy equation were solved simul-
taneously.

For purpose of computation, the elliptic second-
order partial differential equations were replaced by
the appropriate finite-difference approximations in
which an upwind differencing scheme was applied to
the convective terms of the transport equations.

2. THEORETICAL ANALYSIS

The geometry considered consisted of a heated solid
sphere immersed in a fluid enclosed in a concentric
spherical shell of wuniform and unchanging
temperature.

To obtain the flow and temperature distributions
the Navier—-Stokes, continuity and energy equations
were expressed in spherical polar coordinates. The
spherical polar coordinates (r, 8, ¢) of the sphere are
arranged as shown in Fig. 1. As shown in the figure, the
coordinate r is normal to the surface of the body, 8 is
parallel to the surface in the flow direction and ¢ is the
direction of rotation about the axis of symmetry of the
flow. For the particular case of streaming flow past a
stationary sphere with no rotation, the flow around the
vertical axis is axisymmetric, the component of ve-
locity in the ¢-direction is zero everywhere, and all
variables are independent of ¢.

The Navier-Stokes and continuity equations were
combined and expressed in the form of a stream
function and a vorticity transport equation set. The
vorticity, which is the curl of velocity in a fluid, is a
vector quantity having the same nature as angular
velocity. From the definition of the vorticity vector and
from the condition of axisymmetrical flow, there is
only one non-zero component of vorticity, thatis in the
¢-direction. The derivation of vorticity and stream
function equation set from the Navier Stokes and
continuity equations may be found in Batchelor [11].

Numerical solutions of the energy, vorticity trans-
port and stream function equations can be obtained
more conveniently if the equations are expressed in
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dimensionless form. In view of this the variables have
been rendered dimensionless with reference to the
radius of the sphere, the kinematic viscosity of the fluid
at the temperature of the outer boundary (v.,), and the
temperature difference between the sphere surface and
the outer boundary. It was also convenient to trans-
form the equations from polar coordinates (r, 8) to
rectangular coordinates (z, #) by means of the transfor-
mation of r = e*. The dimensionless system of the
equations in rectangular coordinates (z, 8) can be
written as follows:
The velocity components

1

- % 1

" e**sinf 00 ()
1 oy

- 2

Y= 2ing oz @

The energy equation

1 (aw oT & 8T>
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The vorticity transport equation
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The stream function equation

G = ¢=EX(Y) 5)
where
G =1{*sind (6)
and
02 J a* a
A LN 7
B =T T @

Equations (1)—(7) are dependent upon the assump-
tions that the only body force operating is that of
gravity and that temperature variations within the
fluid are not large, so that Boussinesq’s approximation
can be applied thus enabling the density to be treated
as a constant in all terms of the transport equations
except the buoyancy term. Other fluid properties such
as the viscosity, specific heat, and thermal conductivity
are taken to be constant.

Equations (1)—(7) are subject to the following boun-
dary conditions.

Sphere surface: on the sphere surface the ‘no slip’
condition is applied. Therefore,atz = Ofor0 <6 <n

PR PR R
V=0 570 50 =0
62
Gotsno=2Y, 1T -1 @®
Oz

1371

Axis of symmetry : along the axis of symmetry (6 = 0
and @ = =), the ‘no cross flow’ condition is applied.
Therefore, at 8 = 0 and 8 = = for all values of z

LW B,
V=0 5 =0 2 =0
oy oT
—=0; ¢G=0; —=0. 9
00 a0 ®)

Outer boundary : conditions at the outer boundary
are only well defined when the outer boundary radius
tends to infinity ; however, because of limitations of
computer storage and computation time a finite
domain of integration has to be used and it is
considered that at a finite but large radius, all the
dependent variables become asymptotic to their values
in the undisturbed stagnant fluid. Therefore at z =
z, for0<f<n

Yy=0;, G=0; (=0; T=0. (10)

From the distribution of stream function, vorticity
and temperature other quantities can be calculated as
follows.

Local Nusselt number at the sphere surface

oT
Nug = —2— . (11)
az z=0
Average or overall Nusselt number
1 n
Nu = —f Nugsin 6 d6. (12)
2J)o

Dimensionless pressure at the front stagnation point

P 6 e
K0=4J a-gdz+ZGrJ‘ Te*dz. (13)

0 0

Dimensionless pressure at the sphere surface (sur-
face pressure)

() ac
K,= Ky + 2Gr{l —cos8) + 2 <-+C)d9.

o \0z
(14)
Dimensionless pressure drag (form drag)
n
Cpp = j K, sin 26 d6. (15)
]
Dimensionless viscous drag (frictional drag)
n
Cop =4 f ¢, sin? 6 do. (16)
o
Dimensionless total drag
Cpr = Cpp + Cpr- (17)

The integrands in equations (13) and (14) were eva-
luated at 6 = 0 and at z = 0, respectively.

3. NUMERICAL METHOD

The set of differential equations and boundary
conditions, presented in Section 2, were solved numeri-
cally. The first step in the solution of the equations by a
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finite-difference method is to reduce them from con-
tinuous to discrete forms and then to solve the
resulting algebraic equations on a digital computer.

The basic method is to expand the terms of the
original partial differential equations in Taylor’s series.
The series are truncated to a reasonable accuracy and
a set of finite-difference equations obtained by the
replacement of each term by the truncated series. Each
finite-difference equation relates the value of a function
at any mesh point to the values at neighbouring mesh
points. In the present work a five point approximation,
involving four neighbouring points, has been used. The
details of the method used can be found in Smith [12],
Richtmyer and Morton [13] and Roache [14].

The coordinates z and @ introduced in previous
sections form a rectangular system of coordinates. The
domain over which the equations were to be in-
tegrated, the flow region, was represented by a finite
number of points spaced systematically within the
domain. The mesh points were spaced uniformly in
both the z and f-directions.

The vorticity, temperature and stream function
equations were solved using an extrapolated Gauss—
Seidel method. The method was basically the same as
the simple Gauss—Seidel iterative method [12]. How-
ever, in order to accelerate the rate of convergence, a
relaxation factor, wy, which has a value betweerr 0.0
and 2.0 was introduced into the finite-difference equa-
tions as follows:

Wi = WY + wyRY (18)

where the function W, can be either the temperature,
T, the vorticity, G, or the stream function, { and R{Y is
the amount by which the values of W% change for one
iteration. At complete convergence, R{ is equal to
zero. In this work, the following convergence criterion

was used
(19)

Soo [ 15] has explained the extrapolated Gauss—Seidel
method in detail and shows that this method is a
powerful tool for numerical solutions of nonlinear
elliptic partial differential equations.

Numerical experimentation revealed that it was not
possible to use a central difference scheme which was
stable over the entire space region of interest. Hellums
[16] came to the same conclusion for free convec-
tive problems. This problem is closely related to
the concept of a ‘transportive property’ which is well
explained by Roache [14]. In the present work, in
order to preserve the transportive property and to
obtain stability and convergence an upwind
differencing method was used for the finite-difference
representation of the convective terms of the equa-
tions. In this scheme the terms in which the velocity
components appear as coefficients, the convective
terms were approximated by backward differences
when the velocity coefficients were positive. Forward
differences, therefore, were used when the velocity
coefficients were negative. This was achieved by the use

[Wi — WED| < gy,
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of weighting factors @, and w, in the upwind
differences of the first order derivatives in the con-
vective terms.

As an example of the scheme used, the finite-
difference approximation of the vorticity transport
equation is presented as follows:

Adyiy)
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2mn
+meot 0T 4y — Tij-1)] (20)
where
Al = Wivry— Vioyy (2n
and
Aj(‘//ij) = l/’i.jﬂ - ‘I/iij—r (22)

Introduction of the weighting factors w, and w, in
equation (20) enabled four separate systems of finite-
difference equations to be used in the approximation of
the convective terms corresponding to the combi-
nations of signs of the coefficients of the derivatives
(velocities), in the convective terms.

The values of the weighting factors w, and w, in
equation (20) were determined in accordance with the
signs of the coefficient [ —A;(y;;)] and AJy;;), re-
spectively. When these coefficients were positive the
weighting factors were set equal to zero (backward
differences). However, when the coefficients were neg-
ative the weighting factors were set equal to one
(forward differences). In this way the upwind
differencing method was used in this study.

From a formal examination of the Taylor’s series
expansions of the convective terms of the equations it
may be concluded that a central difference scheme is
more accurate than upwind difference schemes. A
particular kind of truncation error is associated with
the application of upwind differencing schemes which
is usually called ‘false viscosity’ (Roache [14] and
Rafique [17]). Arguments have been made to the effect
that accurate solutions are not possible unless the false
viscosity introduced is much less than the real viscosity
of the fluid {17]. However, the solutions obtained by
other authors, as surveyed by Roache [ 14}, for multi-
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Table 1. Main results of this study for different Grashof
numbers

Gr 0.05 1 10 25 50

m 0.04 0.04 0.04 0.04 0.03
n 6° 6 6° 6° 6°

M 80 80 80 80 107

N 30 30 30 30 60
Wg 1.2 1.2 1 0.8 05
@r 15 1.5 1.3 1.1 0.9
Wy 13 12 1 09 0.7
i 1073 1073 5x107% 1072 5x1072
ey 1075 1073 107%  5x107% 1073
6 107 107*  5x107* 1073 5x1073
Nu 2.09 2.39 296 332 3.96
Ky 0.50 597 36.07 76.23 118.30
K, —0.40 ~540 —3126 —4869 —12.66
Cop 1.17 16.42 7488 14370 211.20
Cpp 0.58 7.58 71.29 87.08 10545

dimensional problems support the use of upwind
difference schemes, in particular in the case of steady
state problems. Furthermore, upwind difference
schemes are used because they ensure stability and
rapid convergence; with this in mind, the reduced
accuracy may seem to be an acceptable penalty
(Spalding, Gosman and Caretto [18] and Gosman et
al. [19]).

The main sources of error which could have affected
the accuracy of the results obtained in this study and
the main factors which influenced the computation
time were size of mesh spacing, proximity of the outer
boundary, orders of the polynomials used to approx-
imate the boundary conditions, convergence criteria
and associated relaxation factors. Values for these
factors were found on the basis of numerical experi-
ments, and were selected in order to achieve a balance
between accuracy and economy of the use of comput-
ing facilities.

At Grashof number less than 10 of the solutions
converged rapidly and smoothly. However, at Grashof
numbers greater than 10, vorticity fluctuations ap-
peared close to the outer boundary. These fluctuations
have been recorded by other workers (see for example,
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Soo [15] and Rafique [17]). It is generally known,
however, that as long as the magnitude of the fluc-
tuations is relatively small, it is unlikely that the
solution, and, in particular, the derived flow character-
istics close to the sphere surface will be affected [17).
Numerical experimentation, in the present work, re-
vealed that the magnitude of the fluctuations for
Grashof numbers less than 50 has not been large
encugh to affect the flow characteristics close to the
sphere surface and therefore no attempt was made to
cure the fluctuations. However, in the solutions ob-
tained for a Grashof number of 50 the surface vorticity
and as a consequence, the surface pressure and the
drag coefficients were slightly affected by the fluc-
tuations of the vorticity at the outer boundary. To
obtain solutions at a Grashof number of 50, it was
necessary to reduce the values of the mesh sizes and
relaxation factors and to increase the values of the
convergence criteria. At Grashof numbers greater than
50 the fluctuations became large and were propagated
throughout the entire region of integration so that
solutions could not be obtained.

The values of mesh sizes, relaxation factors, con-
vergence criteria, and the number of mesh points used
for different Grashof numbers are given in Table 1.

The average central processor time required to
obtain a solution for Grashof numbers of 0.05 to 1 was
found to be about 1 h, for Grashof numbers between 1
and 25 it was found to be about 3 h and for Grashof
numbers between 25 and 50 it was found to be about
4 h when using a CDC6400 digital computer.

4, DISCUSSION OF RESULTS

Solutions were obtained for Grashof numbers of
0.05, 1, 10, 25 and 50 for a Prandtl number of 0.72. The
main results are presented in terms of dimensionless
variables in Table 1. In the contour drawings Figs. 2-7,
the direction of flow along the axis of symmetry is from
right (6 = 0) to left (6 = n).

Figures 2 and 3 show the distribution of the stream
function at Grashof numbers of 0.05 and 25. As
expected, the figures show that the rising and descend-
ing currents generate a circulatory flow pattern. As the

F1G. 2. Streamlines, Gr = 0.05, Pr = 0.72.

HMT 24:8 ~ F
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Fi6. 3. Streamlines, Gr = 25, Pr = 0.72.

Fia. 4. Isotherms, Gr = 0.05, Pr = 0.72.

FiG. 5. Isotherms, Gr = 25, Pr = (.72.
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Fic. 6. Vorticity distribution, Gr = 0.05, Pr = 0.72.

Grashof number increases the stream function con-
tours move downstream. This is because as the
Grashof number increases, the ratio of the buoyancy
forces to the viscous forces increases, thus increasing
the effects of convection and the rate of heat transfer.
As a result, the thickness of the heated layer adjacent to
the upstream surface of the sphere is reduced. The
increased velocity of the fluid passing the sphere causes
the fluid in the immediate vicinity of the heated layer to
be dragged downstream so that the streamlines are
shifted from the upstream region of the flow field.

Figures 4 and 5 show the distribution of the
isotherms around the sphere at Grashof numbers of
0.05 and 25, for a Prandt]l number of 0.72. As is to be
expected, an increase in the Grashof number causes the
thickness of the heated layer over the upstream region
of the solid sphere to decrease, while that over the
downstream region increases.

Figures 6 and 7 show the distribution of vorticity
around the solid sphere at Grashof numbers of 0.05
and 25 for a Prandtl number of 0.72, respectively. It is
seen that as the Grashof number increases, the effects
of convection on the vorticity distribution become
important and the contours are displaced in the

downstream direction.

Figure 8 shows the variation of the surface vorticity
with angle, 8, for different Grashof numbers at a
Prandt! number of 0.72. The symmetrical distribution
of surface vorticity confirms that even at a Grashof
number of 25, diffusion is the dominant mode of
vorticity transport close to the sphere surface.

The variation of surface pressure with angle, 8, for
different Grashof numbers at a Prandti number of 0.72
is shown in Fig. 9, It is seen that as the Grashof number
increases, the surface pressure over the upstream
region of the sphere increases while that over the
downstream region decreases and exhibits a shallow
minimum.

The variation of local Nusselt number with angle for
different Grashof numbers at a Prandtl number of0.72
is shown in Fig. 10. It is seen that as the Grashof
number increases, the Nusselt numbers over the
upstream region of the sphere increase while the local
Nusselt numbers over the downstream region
decrease.

Figure 11 shows the variation of average Nusselt
number with Grashof number. In this figure the
analytical result of Hossain [4] and the experimental

Fic. 7. Vorticity distribution, Gr = 25, Pr = 0.72.
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F1G. 8. Variation of surface vorticity with Gr, Pr = 0.72.

results of Mathers, Madden and Piret [8], Tsubouchi
and Sato [9] and Yuge [10] are also plotted for
comparison purposes. It is seen that the present
solutions predict lower values of the average Nusselt
number than the experimental measurements. This
could be attributed to the fact that most experimental
measurements of free convective heat transfer are
subject to disturbances in the fluid caused by external
factors and to additional heat losses because of
conduction and radiation. These factors lead to over-
estimates of the average Nusselt numbers.

It may be concluded that on the basis of the above
discussion the numerical solutions obtained are physi-
cally realistic.
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RESOLUTION NUMERIQUE DE LA CONVECTION THERMIQUE PERMANENTE ET
NATURELLE AUTOUR D’UNE SPHERE SOLIDE

Résumé—On ¢tudie numériquement le transfert thermique par convection naturelle permanente d’une

spheére solide pour un fluide newtonien incompressible avec des nombres de Grashof de 0,05, 1, 10, 25et 50, un

nombre de Prandti de 0,72. Les équations de la fonction de courant, de I'énergie et de la vorticité sont résolus

en utilisant une méthode extrapolée de Gauss—Seidel. Les valeurs obtenues pour le nombre de Nusselt moyen

sont en accord raisonnable avec les mesures expérimentales. On observe aussi que la méthode utilisée ne peut
pas étre appliquée d la recherche des solutions pour un nombre de Grashof supérieur a 50.

NUMERISCHE LOSUNG FUR DIE STATIONARE WARMEABGAEBE EINER KUGEL BEI
FREIER KONVEKTION

Zusammenfassung—Es wurde cine theoretische Untersuchung der Wirmeabgabe bei stationdrer freier

Konvektion einer Kugel an ein inkompressibles newton’sches Fluid bei Grashof-Zahlen von 0,05;1;10:25

und 50 und bei einer Prandtl-Zahl von 0,72 durchgefiihrt. Die Stromfunktion sowie die Energie- und

Wirbeltransportgleichungen wurden mit einem extrapolierten Gauss-Seidel-Verfahrengelist. Die berechne-

ten Werte der mittleren Nusselt-Zahl stimmen mit MeBwerten aus friiheren Verdffentlichungen anderer

Forscher gut iiberein. Es wurde auch festgestellt, daB diese Methode fiir Grashof-Zahlen tiber 50 nicht
anwendbar ist.



Numerical solution of convective heat transfer from a sphere

YUCJIEHHOE UCCJIEAOBAHUE CTALIMOHAPHOI'O CBOBOJHOKOHBEKTUBHOI'O
TEIJIONEPEHOCA OT TBEPJOUW IOBEPXHOCTH

Annoramus — [poseieHO YHCIEHHOE HCC/IEHOBAHHE CTALMOHAPHOrO CBOOOMIHOKOHBEKTHBHOTO TEMjO-
HepeHoca OT TBepaoil cepsl K HECKHMAEMOH HBIOTOHOBCKOH J>KHAKOCTH IIPH 3HAYEHHAX 4YHCIA
I'pacroga, paeubix 0,05; 1; 10; 25 u 50, u uucna [Ipanarns, paBHoro 0,72. VpaBHeHHS (YHKIHH
TOKAa, COXPaHEHHs JHEPrHH M 3aBHXPEHHOCTH pelIaICh MOAHUGHUIHMPOBAHHBIM MeToaoM [aycca-
3eiinens. [Tonyvennsle 3HaYeHHs CpeaHero uucia HyccenbTa XOpoOILIO COIVIACYIOTCH € Pe3yNbTaTaMH
SKCHEPUMCHTANILHEIX H3MEPEHHH, NPOBEJICHHBIX APYTHMH HcCiedoBaTessMH. OYEBHM/HO, YTO HCHOJb-
3YeMBbIil METOI Heb3s APUMEHSTb [UIS HAXOXKIAEHHA pelleHMi npH 3Hauenusx d4ucna [pacroda,
1IpeBbIlLIatoIIMX 50.
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