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Abstract-A numerical study has been made of steady-state free convective heat transfer from a solid sphere 
to an incompressible Newtonian fluid for Grashof numbers of0.05, 1, IO, 2.5 and 50 for a Prandtl number of 
0.72. The stream function, energy, and vorticity transport equations were solved using an extrapolated 
Gauss- Seidel method. The values obtained for the average Nusselt number were found to be in reasonable 
agreement with the experimental measurements obtained by previous workers. It was also observed that the 

method used could not be applied to find solutions for Grashof numbers greater than 50. 

NOMENCLATURE 

dimensionless viscous drag; 
dimensionless pressure drag; 
dimensionless total drag; 
specific heat at constant pressure; 
modified dimensionless vorticity defined 
by equation (6); 
Grashof number based on the radius of 
the sphere (R3pg(T, - 7’Jv’); 
gravitational acceleration; 
average heat transfer coefficient ; 
local heat transfer coefficient; 
dimensionless pressure at the front stag- 
nation point ; 
dimensionless pressure at sphere surface; 
thermal conductivity; 
number of mesh points in the z-direction ; 
mesh size in the z-direction ; 
number of mesh points in the O-direction ; 
mesh size in the e-direction ; 
average Nusselt number (2RH/k); 

local Nusselt number (2Rk$k); 
Prandtl number (v/a); 
radius of sphere ; 
Rayleigh number {GrPr); 

dimensionless radial coordinate; 
spherical polar coordinates; 
dimensionless temperature; 
dimensionless velocity components in the 
z and ~-dir~tions; 
a general continuous function represent- 
ing T, G and I,&; 
rectangular Cartesian coordinates; 
modified coordinate defined as z = In r . 

Greek symbols 
thermal diffusivity (k/PC,); 

volumetric coefficient of expansion with 
temperature; 
convergence criterion for the vorticity ; 
convergence criterion for the temp- 
erature; 
convergence criterion for a general 
function ; 
convergence criterion for the stream 
function; 
dimensionl~s vorticity ~om~nent in the 
&direction ; 
angular coordinate ; 
fluid kinematic viscosity ; 
density; 
coordinate representing the angle of ro- 
tation about the axis of symmetry of the 
flow; 
dimensionless stream function ; 
relaxation factor for the vorticity ; 
relaxation factor for the temperature; 
relaxation factor for a general function ; 
weighting factor for upwind difference 
representation of a f=st-order derivative 
with respect to z; 
weighting factor for upwind difference 
representation of a first-order derivative 
with respect to 8; 
relaxation factor for the stream function. 

Subscripts 
4 mesh point index in the z-direction; 

J, mesh point index in the O-direction; 

t369 
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I 

FK;. 1. Spherical polar coordinate system 

indices of a mesh point in the flow region ; 
sphere surface ; 
outer boundary condition. 

Superscripts 

(L), (L)th iteration ; 

(L - l), (L - 1)th iteration. 

I. INTRODUCTION 

THE PROCESS of heat transfer by free convection is 

encountered frequently in industrial applications such 
as steam boilers, digesters, furnaces, etc. In general, free 

convective heat transfer becomes an important mode 
of heat transfer in any situation in which a hot body is 
immersed in an otherwise stationary medium. 

Because of its considerable importance in many 
engineering applications the fundamentals of heat and 
mass transfer from solid particles, drops, or bubbles to 
a continuous fluid phase have long attracted the 
attention of investigators. The study of heat transfer 
from a single sphere together with the associated fluid 
dynamics has been used as a first step in the analysis of 
multiparticle systems. 

A considerable number of experimental and 
theoretical studies have been carried out on free 
convective heat and mass transfer from spherical 
particles at high Rayleigh numbers (Ra > 105, see for 
example Pandya [l]). However, relatively few workers 
have studied the same problem at low Rayleigh 
numbers possibly because of the experimental 
difficulties involved and because boundary layer 
theory is not applicable. Thus, theoretical work has to 
be based on numerical solutions of the Navier-Stokes 
and energy equations. 

The pertinent analytical and experimental studies of 

free convective heat transfer from a sphere are the 
analytical studies of Mahony [2] and Fendel [3], and 
the analytical and experimental study of Hossain [4], 
and the experimental works of Meyer [5], Elenbaas 
[6], Ranz and Marshall [7], Mathers, Madden and 

Piret [8], Tsubouchi and Sato [9] and Yuge [lo]. 
Most of these studies were confined to the determin- 
ation of average Nusselt numbers. Hossain [4] was 

the only one who obtained flow patterns and tempera- 
ture distributions about a sphere and he was only able 

to obtain them for extremely small Grashof numbers 
(Gr I 1.0). There have been no reports of complete 
analytical or numerical solutions for Grashof numbers 

larger than 1.0. 
The axially symmetric nature of the problem en- 

abled the Navier-Stokes and the continuity equations 

to be combined and expressed as a vorticity transport 
equation and a stream function equation. These latter 
two and the energy equation were solved simul- 

taneously. 
For purpose of computation, the elliptic second- 

order partial differential equations were replaced by 

the appropriate finite-difference approximations in 
which an upwind differencing scheme was applied to 

the convective terms of the transport equations. 

2. THEORETICAL ANALYSIS 

The geometry considered consisted of a heated solid 

sphere immersed in a fluid enclosed in a concentric 
spherical shell of uniform and unchanging 

temperature. 
To obtain the flow and temperature distributions 

the Navier-Stokes, continuity and energy equations 

were expressed in spherical polar coordinates. The 

spherical polar coordinates (r, 0, 4) of the sphere are 
arranged as shown in Fig. 1. As shown in the figure, the 
coordinate r is normal to the surface of the body, 0 is 
parallel to the surface in the flow direction and C$ is the 

direction of rotation about the axis of symmetry of the 

flow. For the particular case of streaming flow past a 
stationary sphere with no rotation, the flow around the 

vertical axis is axisymmetric, the component of ve- 
locity in the &direction is zero everywhere, and all 

variables are independent of 4. 
The Navier-Stokes and continuity equations were 

combined and expressed in the form of a stream 
function and a vorticity transport equation set. The 
vorticity, which is the curl of velocity in a fluid, is a 
vector quantity having the same nature as angular 
velocity. From the definition of the vorticity vector and 
from the condition of axisymmetrical flow, there is 
only one non-zero component of vorticity, that is in the 
&direction. The derivation of vorticity and stream 

function equation set from the Navier Stokes and 
continuity equations may be found in Batchelor [ 111. 

Numerical solutions of the energy, vorticity trans- 
port and stream function equations can be obtained 
more conveniently if the equations are expressed in 
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dimensionless form. In view of this the variables have 
been rendered dimensionless with reference to the 
radius of the sphere, the kinematic viscosity of the fluid 
at the temperature of the outer boundary (v,), and the 
temperature difference between the sphere surface and 
the outer boundary. It was also convenient to trans- 
form the equations from polar coordinates (r, 0) to 
rectangular coordinates (z, 13) by means of the transfor- 
mation of r = e’. The dimensionless system of the 
equations in rectangular coordinates (z, 0) can be 
written as follows: 

The velocity components 

1 a* u,=--- 
e2’sin 0 de 

1 w 

” ezZsin e az 

(1) 

(2) 

The energy equation 

1 

e’sin 8 C 

a$ aT a$ a7- 
_---- 
az de ae aZ 1 

dT a2T 
iziz+cOte~ (3) 

The vorticity transport equation 

1 
__ 3 ~-2cot13G)-~~~-2G)] 

I c e* sin 8 aZ ae 

=e”‘E2(G)+e2~sin2BGr(~+cot0$+). (4) 

The stream function equation 

e2rG = e”E’(II/) 

where 

G = y sin 0 

and 

(5) 

(6) 

a2 a a2 
e2~E2=S-Z+au”-cotB$. (7) 

Equations (lH7) are dependent upon the assump- 
tions that the only body force operating is that of 
gravity and that temperature variations within the 
fluid are not large, so that Boussinesq’s approximation 
can be applied thus enabling the density to be treated 
as a constant in all terms of the transport equations 
except the buoyancy term. Other fluid properties such 
as the viscosity, specific heat, and thermal conductivity 
are taken to be constant. 

Equations (l)-(7) are subject to the following boun- 
dary conditions. 

Sphere surface: on the sphere surface the ‘no slip’ 
condition is applied. Therefore, at z = 0 for 0 2 0 I n 

*=o; $0; $0; $0 

G = [sin 0 = $; T = 1. (8) 

Axis of symmetry : along the axis of symmetry (0 = 0 
and 19 = a), the ‘no cross flow’ condition is applied. 
Therefore, at 0 = 0 and 0 = rt for all values of z 

*=o. !!F& Txo. 
’ aZ ’ az2 ’ 

a* 
%=O; G=O; ;=O. (9) 

Outer boundary : conditions at the outer boundary 
are only well defined when the outer boundary radius 
tends to infinity; however, because of limitations of 
computer storage and computation time a finite 
domain of integration has to be used and it is 
considered that at a finite but large radius, all the 
dependent variables become asymptotic to their values 
in the undisturbed stagnant fluid. Therefore at z = 
Z, for 0 2 e 5 7~ 

i,b=O; G=O; (‘=O; T=O. (10) 

From the distribution of stream function, vorticity 
and temperature other quantities can be calculated as 
follows. 

Local Nusselt number at the sphere surface 

Nu 
0 

= -2T 
3- (11) 
uz lz=o 

Average or overall Nusselt number 

Nu = ; 
s 

II 
Nu, sin 0 de. 

0 
(12) 

Dimensionless pressure at the front stagnation point 

K, = 4 T e* dz. (13) 

Dimensionless pressure at the sphere surface (sur- 
face pressure) 

K,=K,+2Gr(l-cosB)+2/;(;+[)dB. 

(14) 

Dimensionless pressure drag (form drag) 

s 

n 

CDP = KB sin 28 dt?. (15) 
0 

Dimensionless viscous drag (frictional drag) 

J’ 

n 
CDF = 4 c, sin’ 6 de. (16) 

0 

Dimensionless total drag 

CDT = COP + COP. (17) 

The integrands in equations (13) and (14) were eva- 
luated at 0 = 0 and at z = 0, respectively. 

3. NUMERICAL METHOD 

The set of differential equations and boundary 
conditions, presented in Section 2, were solved numeri- 
cally. The first step in the solution of the equations by- a 
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finite-difference method is to reduce them from con- 
tinuous to discrete forms and then to solve the 
resulting algebraic equations on a digital computer. 

The basic method is to expand the terms of the 
original partial differential equations in Taylor’s series. 
The series are truncated to a reasonable accuracy and 
a set of finite-difference equations obtained by the 
replacement of each term by the truncated series. Each 
finite-difference equation relates the value of a function 
at any mesh point to the values at neighbouring mesh 
points. In the present work a five point approximation, 
involving four neighbouring points, has been used. The 
details of the method used can be found in Smith [ 121, 
Richtmyer and Morton [13] and Roache [14]. 

The coordinates z and 6 introduced in previous 
sections form a rectangular system of coordinates. The 
domain over which the equations were to be in- 
tegrated, the how region, was represented by a finite 
number of points spaced systematically within the 
domain. The mesh points were spaced uniformly in 
both the z and &directions. 

The vorticity, temperature and stream function 
equations were solved using an extrapolated Gauss- 
Seidel method. The method was basically the same as 
the simple Gauss-Seidel iterative method [ 121. How- 
ever, in order to accelerate the rate of convergence, a 
relaxation factor, ww, which has a value between 0.0 
and 2.0 was introduced into the finite-difference equa- 
tions as follows: 

I+‘!L! = W!L.- I) + e+Rj>’ 1 .J I., (18) 

where the function IV, can be either the temperature, 
T, the vorticity, G, or the stream function, II/ and R$) is 
the amount by which the values of IV&) change for one 
iteration. At complete convergence, RI?) is equal to 
zero. In this work, the following convergence criterion 
was used 

) wfj - wy- 1) / 5 cw, (19) 

Soo [15] has explained the extrapolated Gauss-Seidel 
method in detail and shows that this method is a 
powerful tool for numerical solutions of nonlinear 
elliptic partial differential equations. 

Numerical experimentation revealed that it was not 
possible to use a central difference scheme which was 
stable over the entire space region of interest. Hellums 
[16] came to the same conclusion for free convec- 
tive problems. This problem is closely related to 
the concept of a ‘transportive property’ which is well 
explained by Roache [14]. In the present work, in 
order to preserve the transportive property and to 
obtain stability and convergence an upwind 
differencing method was used for the finite-difference 
representation of the convective terms of the equa- 
tions. In this scheme the terms in which the velocity 
components appear as coefficients, the convective 
terms were approximated by backward differences 
when the velocity coefficients were positive. Forward 
differences, therefore, were used when the velocity 
coefficients were negative. This was achieved by the use 

of weighting factors o, and we in the upwind 
differences of the first order derivatives in the con- 
vective terms. 

As an example of the scheme used, the finite- 
difference approximation of the vorticity transport 
equation is presented as follows: 

- (1 - w,)Gi,j_ 1 - 2n Cot 8jGi,j] 

- ss& [WzGi+ 1.j + (1 - 20zFi.j 
I 

- (1 - WzFi.1 ,j - 2mGi,j] 

e23, sin2 t7 .Gr 
+ 2mn ’ [n(Ti+l.j - Ti-l.j) 

+ WlCOtBj(Ti,j+1 - ri,j-l)] 

where 

(20) 

and 

Ai($ij) = tii+i.j - tii-1.j (21) 

A,(ll/ij) = $i.j+ 1 - *i.j- 1' (22) 

Introduction of the weighting factors u), and wR in 
equation (20) enabled four separate systems of finite- 
difference equations to be used in the approximation of 
the convective terms corresponding to the combi- 
nations of signs of the coefficients of the derivatives 
(velocities), in the convective terms. 

The values of the weighting factors w, and C+ in 
equation (20) were determined in accordance with the 
signs of the coefficient [ -Aj($ij)] and Ai(iij), re- 
spectively. When these coefficients were positive the 
weighting factors were set equal to zero (backward 
differences). However, when the coefficients were neg- 
ative the weighting factors were set equal to one 
(forward differences). In this way the upwind 
differencing method was used in this study. 

From a formal examination of the Taylor’s series 
expansions of the convective terms of the equations it 
may be concluded that a central difference scheme is 
more accurate than upwind difference schemes. A 
particular kind of truncation error is associated with 
the application of upwind differencing schemes which 
is usually called ‘false viscosity’ (Roache [14] and 
Rafique [ 171). Arguments have been made to the effect 
that accurate solutions are not possible unless the false 
viscosity introduced is much less than the real viscosity 
of the fluid [17]. However, the solutions obtained by 
other authors, as surveyed by Roache [ 143, for multi- 
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Table 1. Main results of this study for different Grashof 
numbers 

Gr 0.05 1 10 25 50 

m 0.04 
a 80 6” 

N 30 
% 1.2 
@Jr 1.5 
wti 1.3 
cc 1o-3 
CT 1o-5 
cI1, 10-4 
NU 2.09 
Ko 0.50 
I=, - 0.40 
CUF 1.17 
c DP 0.58 

0.04 0.04 
6 6” 

80 80 
30 30 

1.2 1 
1.5 1.3 
1.2 1 

10-3 5x10-3 
10-S 1o-4 
1O-4 5 x 10-a 

2.39 2.96 
5.97 36.07 

-5.40 -31.26 
16.42 74.88 
7.58 71.29 

0.04 

& 
30 
0.8 
1.1 
0.9 

10-z 
5 x 10-4 

1o-3 
3.32 

76.23 
- 48.69 
143.70 
87.08 

0.03 
6 

107 
60 
0.5 
0.9 
0.7 

5 x 10-l 
lo-’ 

5x 1o-3 
3.96 

118.30 
- 12.66 
211.20 
105.45 

dimensional problems support the use of upwind 
difference schemes, in particular in the case of steady 
state problems. Furthermore, upwind difference 
schemes are used because they ensure stability and 
rapid convergence; with this in mind, the reduced 
accuracy may seem to be an acceptable penalty 
(Spalding, Gosman and Caretto [IS] and Gosman et 
al. [19-j,. 

The main sources of error which could have affected 
the accuracy of the results obtained in this study and 
the main factors which influenced the computation 
time were size of mesh spacing, proximity of the outer 
boundary, orders of the polynomials used to approx- 
imate the boundary conditions, convergence criteria 
and associated relaxation factors. Values for these 
factors were found on the basis of numerical experi- 
ments, and were selected in order to achieve a balance 
between accuracy and economy of the use of comput- 
ing facilities. 

At Grashof number less than 10 of the solutions 
converged rapidly and smoothly. However, at Grashof 
numbers greater than 10, vorticity fluctuations ag 
peared close to the outer boundary. These fluctuations 
have been recorded by other workers (see for example, 

Soo [15] and Rafique [17]). It is generally known, 
however, that as long as the magnitude of the fluc- 
tuations is relatively small, it is unlikely that the 
solution, and, in particular, the derived flow character- 
istics close to the sphere surface will be affected [I7]. 
Numerical experimentation, in the present work, re- 
vealed that the magnitude of the fluctuations for 
Grashof numbers less than 50 has not been large 
enough to affect the flow characteristics close to the 
sphere surface and therefore no attempt was made to 
cure the fluctuations. However, in the solutions ob- 
tained for a Grashof number of 50 the surface vorticity 
and as a consequence, the surface pressure and the 
drag coefficients were slightly affected by the fluc- 
tuations of the vorticity at the outer boundary. To 
obtain solutions at a Grashof number of 50, it was 
necessary to reduce the values of the mesh sizes and 
relaxation factors and to increase the values of the 
convergence criteria. At Grashof numbers greater than 
50 the fluctuations became large and were propagated 
throughout the entire region of integration so that 
solutions could not be obtained. 

The values of mesh sizes, relaxation factors, con- 
vergence criteria, and the number of mesh points used 
for different Grashof numbers are given in Table 1. 

The average central processor time required to 
obtain a solution for Grashof numbers of 0.05 to 1 was 
found to be about 1 h, for Grashof numbers between 1 
and 25 it was found to be about 3 h and for Grashof 
numbers between 25 and 50 it was found to be about 
4 h when using a CDC6400 digital computer. 

4. DISUNION OF RESULTS 

Solutions were obtained for Grashof numbers of 
0.05,1,10,25 and 50 for a Prandtl number of 0.72. The 
main results are presented in terms of dimensionless 
variables in Table 1. In the contour drawings Figs. 2-7, 
the direction of tlow along the axis of symmetry is from 
right (6 = 0) to left (6 = n). 

Figures 2 and 3 show the distribution of the stream 
function at Grashof numbers of 0.05 and 25. As 
expected, the figures show that the rising and descend- 
ing currents generate a circulatory flow pattern. As the 

FIG. 2. Streamlines, Gr = 0.05, Pr = 0.72. 
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u=s 

FK. 3. Streamlines, Gr = 25, Pr = 0.72. 

FK;. 4. Isotherms, Gr = 0.05. Pr = 0.72. 

t?=l? 

FK;. 5. Isotherms, Gr = 25, Pr = 0.72. 

e=0 
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FE 6. Vorticity dis~ibutio~, Gr = 0.05, Pr = 0.72. 

Grashof number increases the stream function con- 
tours move downstream. This is because as the 
Grashof number increases, the ratio of the buoyancy 
forces to the viscous forces increases, thus increasing 
the effects of convection and the rate of heat transfer. 
As a result, the thickness of the heated layer adjacent to 
the upstream surface of the sphere is reduced. The 
increased velocity of the fluid passing the sphere causes 
the&id in the~mm~iate vicinity of the heated layer to 
be dragged downstream so that the streamlines are 
shifted from the upstream region of the flow field. 

Figures 4 and 5 show the distribution of the 
isotherms around the sphere at Grashof numbers of 
0.05 and 25, for a Prandtl number of 0.72. As is to be 
expected, an increase in the Grashof number causes the 
thickness of the heated layer over the upstream region 
of the solid sphere to decrease, while that over the 
downstream region increases. 

Figures 6 and 7 show the distribution of vorticity 
around the solid sphere at Grashof numbers of 0.05 
and 25 for a Prandtl number of 0.72, respectively. It is 
seen that as the Grashof number increases, the effects 
of convection on the vorticity distribution become 
important and the contours are displaced in the 

downstream direction. 
Figure 8 shows the variation of the surface vorticity 

with angle, 19, for different Grashof numbers at a 
Prandtl number of 0.72. The symmetrical distribution 
of surface vorticity confirms that even at a Grashof 
number of 25, diffusion is the dominant mode of 
vorticity transport close to the sphere surface. 

The variation of surface pressure with angle, 8, for 
different Grashof numbers at a Prandtl number of 0.72 
is shown in Fig. 9, It is seen that as the Grashof number 
increases, the surface pressure over the upstream 
region of the sphere increases while that over the 
downstream region decreases and exhibits a shallow 
minimum. 

The variation of local Nusseh number with angle for 
different Grashof numbers at a Prandtl number of0.72 
is shown in Fig. 10. It is seen that as the Grashof 
number increases, the Nusseh numbers over the 
upstream region of the sphere increase while the local 
Nusselt numbers over the downstream region 
decrease. 

Figure 11 shows the variation of average Nusselt 
number with Grashof number. In this figure the 
analytical result of Hossain [4] and the experimental 

FN;. 7. Vorticity distribution, Gr = 25, Pr = 0.72. 
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30 60 90 120 150 

0 

Fu;. 8. Variation of surface vorticity with Gr, Pr = 0.72. 

results of Mathers, Madden and Piret [8], Tsubouchi 
and Sato [9] and Yuge [lo] are also plotted for 
comparison purposes. It is seen that the present 
solutions predict lower values of the average Nusselt 
number than the experimental measurements. This 
could be attributed to the fact that most experimental 
measurements of free convective heat transfer are 
subject to disturbances in the fluid caused by external 
factors and to additional heat losses because of 
conduction and radiation. These factors lead to over- 
estimates of the average Nusselt numbers. 

It may be concluded that on the basis of the above 
discussion the numerical solutions obtained are physi- 
cally realistic. 
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RESOLUTION NUMERIQUE DE LA CONVECTION THERMIQUE PERMANENTE ET 
NATURELLE AUTOUR D’UNE SPHERE SOLIDE 

R&urn&--On etudie numeriquement le transfert thermique par convection naturelle permanente dune 
sphere solide pour un fluide newtonien incompressible avec des nombres de Grashof de0,05, 1, lo,25 et 50, un 
nombre de Prandtl de 0,72. Les equations de la fonction de courant, de l’energie et de la vorticite sont r&solus 
en utilisant une methodeextrapolb de Gauss-Seidel. Les valeurs obtenues pour le nombrede Nusseh moyen 
sont en accord raisonnable avec les mesures experimentales. On observe aussi que la methode utilisee ne peut 

pas btre appliqub ii la recherche des solutions pour un nombre de Grashof superieur a 50. 

NUMERISCHE LtiSUNG FUR DIE STATIONARE WARMEABGAEBE EINER KUGEL BE1 
FREIER KONVEKTION 

Znaammenfasaung-Es wurde eine theoretische Untersuchung der Warmeabgabe bei stationarer freier 
Konvektion einer Kugel an ein inkompr~~bles newton’sches Fluid bei Grashof-Z~len von 405; 1; 10; 25 
und 50 und bei einer Prandtl-Zahl von 0,72 durchgefiihrt. Die Stromfunktion sowie die Energie- und 
Wirbeltransportgleichungen wurden mit einem extrapolierten Gauss-Seidel-Verfahrengelost. Die berechne- 
ten Werte der mittleren Nusselt-Zahl stimmen mit MeDwerten aus friiheren VerGffentlichungen anderer 
Forscher gut iiberein. Es wurde such festgestellt, daB diese Methode fiir Grashof-Zahlen iiber 50 nicht 

anwendbar ist. 



Numerical solution of convective heat transfer from a sphere 

‘IMCJIEHHOE MCCJIEflOBAHkiE CTA~BOHAPHOTO CBO6OJ(HOKOHBEKTkfBHOTO 
TEIIJIOFIEPEHOCA OT TBEPAOI? I’IOBEPXHOCTM 

AHHOTOUIIS- npOBCneH0 YWCJlCHHOC HCCJlCLlOBaHBC CTaIIkfOHZipHOrO CB060AHOKOHBCKTIIBHOr0 TUIJIO- 

nC~HOCi3 OT TBCpnOii Cf$CpEJ K HCCN,MaCMOk HbIOTOHOBCKOi? XWLWOCTH npH 3HaYCHBllX YWCJIa 

rpaCrO&i, paeHbrx 0,05; 1; 10; 25 H 50, u wcna npaHnTn% paLmor 0,72. YpaBHeHsn +yHKItHW 
TOKa, COXpaHeHHX 3HepWR 11 3aBHXpeHHOCTH pe,UanE,Cb MO~H@l~HpOBaHHbIM MeTOLLOM ,-ayCCa- 

Jeiinenn. FIonyYeHHble 3HaqeHm cpentrero wcna HyCCCnbTa xopomo cornacyroTca c pe3ynbTaTaMB 
3KCnCpWMCHTaJibHbIX tl3MCpCHHii, npOBeneHHbIX npyrHMH UCCnCflOBaTeJUlMH. O'IeBHL,HO, qT0 HCnOnb- 

3yeMbG MeTon Hen6311 npmeHRTb mn HaxomeHm pemeHaR npa 3Haqemisx wicna rpacro+a, 
n~BbI"EiHlUHX 50. 
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